
Advanced Mathematical Models & Applications

Vol.9, No.2, 2024, pp.234-245

https://doi.org/10.62476/amma9234

SYNCHRONIZING CHAOS: EXPLORING ATTRACTIVE SETS IN
A NOVEL 4D HYPERCHAOTIC LORENZ MODEL

Abdelwahab Zarour1, ID Iqbal M. Batiha2,3,∗, ID Adel Ouannas4,
Merabti Nesrine Lamya4, Imad Rezzoug4

1Department of Mathematics, Faculty of Exact Sciences, Constantine University, Algeria
2Department of Mathematics, Al Zaytoonah University of Jordan, Amman 11733, Jordan
3Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, UAE
4Department of Mathematics and Informatics, University Larbi Ben M’hidi, Oum-El-Bouaghi
04000, Algeria
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1 Introduction

The research of hyperchaotic systems expanded into interdisciplinary areas in the years that
followed, including physics, engineering, biology, and economics (Momani et al., 2023; Ouannas
et al., 2022; Albadarneh et al., 2021; Batiha et al., 2022, 2021). Numerous hyperchaotic systems
in nonlinear regimes have been discovered since the advent of the hyperchaotic Rosler system
by Rosler, which suggests the existence of multiple positive Lyapunov exponents (Ouannas et
al., 2021; Talbi et al., 2020; Bezziou et al., 2021). In these several fields, researchers have used
hyperchaotic systems to simulate and comprehend complicated events. Because of their intrinsic
complexity and pseudorandomness, hyperchaotic systems have also found use in secure commu-
nications, cryptography, and random number generation. The Lorenz-Haken system (Ning &
Haken, 1990), the hyperchaotic Matsumoto circle (Matsumoto et al., 1986), the hyperchaotic
modified Chua circle (Thamilmaran et al., 2004), the hyperchaotic Chua circle (Kapitaniak &
Chua, 1994), and the hyperchaotic Chen system Chen et al. (2010) are typical examples of hy-
perchaotic systems. These examples demonstrate the wide range of applications of hyperchaos
in fields like nonlinear circuits Cenys et al. (2003), synchronization (Jiang et al., 2004), secure
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communications (Udaltsov et al., 2003), neural networks (Arena et al., 1995), lasers (Vicente et
al., 2005), control (Hsieh et al., 1999), and so on.

Compared to chaotic systems, hyperchaotic systems feature more unstable manifolds and
are more complicated. In recent times, hyperchaos research has gained prominence in nonlinear
science. One of the central problems of dynamical systems theory is identifying the boundaries
between chaotic and hyperchaotic systems. It is still very difficult to predict whether hidden
attractors exist in chaotic or hyperchaotic systems, which is particularly problematic for en-
gineering applications where this information is crucial. Furthermore, measuring the fractal
dimensions of chaotic attractors, like the Lyapunov and Hausdorff dimensions, and controlling
chaos are all made possible by having a solid grasp of the boundedness of chaotic systems.
Boundary estimate of chaotic and hyperchaotic systems has been studied recently using various
approaches. But these techniques frequently target particular systems, which makes it difficult
to develop a general strategy for estimating boundaries across different chaotic systems and
prevents the limits of many systems from being found.

The use of different strategies and tactics to regulate or suppress chaotic activity in nonlin-
ear dynamic systems is known as ”chaos control”. The goals of chaos management techniques
are to stabilize these systems, forecast their behavior, or modify them for particular uses. A
few popular methods for controlling chaos include feedback control, oscillating control, state-
averaged control, optimum control, bifurcation control, and so on. Regarding control theory,
see Imad & Abdelhamid (2016); Rezzoug & Ayadi (2018); Imad & Lamya (2022); Rezzoug &
Ayadi (2017, 2023) for further information. For the purpose of researching the new chaotic
system’s qualitative behavior and chaos control, the system’s boundary is crucial. A chaotic or
hyperchaotic system cannot include a hidden attractor outside of the global set of attractions if
we can demonstrate that the system contains a global set of attractions. This is critical for engi-
neering applications (Leonov & Kuznetsov, 2013; Bragin et al., 2011) since it is highly uncertain
whether hidden attractors will exist. Moreover, boundedness of chaotic systems is crucial for
many applications such as chaos synchronization and control. The fractal dimension of chaotic
attractors, like the Lyapunov and Hausdorff dimensions, can also be estimated as in Kuznetsov
et al. (2014). Boundary estimate of chaotic and hyperchaotic systems has been the subject of
numerous studies recently Elhadj & Sprott (2010); Leonov et al. (1987); Li et al. (2005, 2009);
Pogromsky et al. (2003); Sun (2009); Wang et al. (2010); Fuchen (2019); Fuchen & Guangyun
(2016); Gasimov et al. (2019). Nevertheless, the techniques chosen in the corresponding studies
are limited to the corresponding systems. Deriving a universal approach to approximate the
boundaries of any chaotic system is a highly challenging task. There are still many chaotic
systems whose bounds are unknown.

The following references describes the complete synchronization of chaotic systems (A) and
(B): Ouannas & Odibat (2015); Ouannas et al. (2017a, 2019, 2017b); Ouannas & Grassi (2016);
Ouannas et al. (2017c, 2020). The goal of full synchronization is to control the slave system
(B) so that its state asymptotically follows that of the main system (A). This is applicable if
the chaotic system (A) is referred to as the master system or driving system, and the controlled
chaotic system (B) is referred to as the slave system or response system. Because of their
enormous potential applications in a variety of domains, including biology, engineering, medicine,
and information technology, chaos control and synchronization have drawn a lot of attention.
Numerous control systems, including B, have been created in recent decades to study global chaos
synchronization difficulties. Methods such as sampled data feedback synchronization Yang &
Chua (1999), OGY Ott et al. (1990), time-delay feedback Park & Kwon (2003), backstepping
Yu & Zhang (2006), adaptive design Liao & Tsai (2000), sliding mode control Konishi et al.
(1998), and so on.

Inspired by the conversation above, we will explore the boundaries of a novel hyperchaotic
Lorenz system. After that, we analyze the full chaotic synchronization using the results that
we have gathered. The system parameters are provided with an exact threshold by using a
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two-variable linear feedback controller. Lastly, we use numerical simulations to confirm the
stability and effectiveness of the suggested chaotic synchronization approach. These simulations
work as a testing ground, letting us observe the theoretical ideas in operation in a regulated
computing setting. These simulations allow us to monitor the behavior of the system, evaluate
the effects of changing parameters, and determine whether the synchronized states are stable.
The numerical results provide a visual depiction of the synchronized trajectories and corroborate
the analytical findings, making the theoretical framework more concrete and understandable
for a broader audience. The core of this work is essentially the combination of theoretical
investigation, rigorous analysis, and computational simulations, which opens up new avenues
for our knowledge of hyperchaotic systems and the dynamics of synchronization.

2 Problem formulation and main result

The well-known Lorenz system is explained by Lorenz (1963): x
′

= a (y − x)
y′ = cx− xz − y
z′ = xy − bz

, (1)

where x, y and z are the state variables, and a, b and c are the real constants. System (1)
is chaotic when a = 10, b = 8/3, and c = 28. Three nonlinearity terms are included in
the innovative hyperchaotic Lorenz system that Xingyuan and Mingjun Wang build in Wang
& Wang (2008). The following system can be used to characterize the new four-dimensional
system: 

x
′

= a (y − x) + w
y′ = cx− xz − y
z′ = xy − bz
w′ = rw − yz

, (2)

where a, b, c and r are all real constant parameters. The computation reveals that system (2)
has the following Lyapunov exponents λ1 = 0.3381 > 0, λ2 = 0.1586 > 0, λ3 = 0, and λ4

= −15.1752, when a = 10, b =
8

3
, c = 28, and r = −1 are selected (see Wang & Wang (2008)).

The hyperchaotic nature of system (2) is indicated by the two positive Lyapunov exponents.
Fig. 1 displays the attractor’s projections.

In Wang & Wang (2008), several fundamental dynamical characteristics of the new four-
dimensional hyperchaotic system (2) were examined. However, there are still a lot of system
(2) properties that are unknown. We shall talk about the boundedness of the new hyperchaotic
system (2) in the following.

Lemma 1. If Γ is a set defined by

Γ =

{
(y, z) /

y2

b2
+

(z − c)2

c2
= 1, b > 0, c > 0

}
(3)

and G = y2 + z2, H = y2 + (z − 2c)2, (y, z) ∈ Γ. Then we have

max
(y,z)∈Γ

G = max
(xy,z)∈Γ

H =

 b4

b2 − c2
, b ≥

√
2c

4c2, b <
√

2c
. (4)

Proof. By using the Lagrange multiplier approach, it may be simply determined.
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Figure 1: Hyperchaotic attractor of the system (2) with a = 10, b =
8

3
, c = 28 and r = −1
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Theorem 1. The following set

Ω =

{
(x, y, z, w) /, x2 ≤

(
R2 +Rc− raR

)
r2a2

2

,y2 + (z − c)2 ≤ R2, w2 ≤
(
R2 +Rc

)
r2

2
}

(5)

is the bound for systems (2), where

R2 =


b2c2

4 (b− 1)
, if b ≥ 2

c2 , if b < 2
, (6)

and where a > 0, b > 0, c > 0 and r < 0.

Proof. Define the following Lyapunov function

V1 (y, z) = y2 + (z − c)2 . (7)

Next, the time derivative along system (2)’s orbits is

.
V1 = 2yy′ + 2 (z − c) z′

= −2y2 − 2bz2 + 2cbz

= −2y2 − 2b
(
z − c

2

)2
+
bc2

2
(8)

Now, consider the equation
.
V1 = 0. This implies that the surface

Γ =

(y, z) /
y2

bc2

4

+

(
z − c

2

)2

c2

4

= 1, b > 0, c > 0

 (9)

will be an ellipsoid in 2D-space for certain values of b and c. It should be noted here that we

have
.
V1 < 0 outside Γ, while we have

.
V1 > 0 inside Γ. Since the function V1 = y2 + (z − c)2 is

continuous on the losed set Γ, then V1 can reach its maximum on the surface Γ. Now, denote
the maximum value of V as R2, that is

R2 = maxV1(y,z)∈Γ.

As a result, Lemma 1 makes it simple to get

V1 (y, z) ≤ R2 =


b2c2

4 (b− 1)
, if b ≥ 2

c2 , if b < 2
. (10)

From formula (10), we get

|y| ≤ R, |z| ≤ R+ c. (11)

Concurrently, system (2) and formula (11) yield

w′ = rw − yz ≤ rw + |y| |z| ≤ rw +R (R+ c) .

Using the principle of comparison, we arrive at

w (t) ≤ R2 +Rc

−r
+

(
w (t0) +

R2 +Rc

r

)
er(t−t0), where r < 0. (12)
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So, we have

lim
t→+∞

w (t) ≤ R2 +Rc

−r
. (13)

In other words, the inequality w2 ≤
(
R2 +Rc

)
r2

2

is satisfied as t → +∞. Now, similarly, from

(2), (11) and (13), we can obtain

x
′

= a (y − x) + w ≤ −ax+ aR+
R2 +Rc

−r
. (14)

Utilizing the comparison concept gives

x (t) ≤ −raR+R2 +Rc

−ra
+

(
x (t0) +

−raR+R2 +Rc

−ra

)
e−a(t−t0), where r < 0. (15)

So, we have

lim
t→+∞

x (t) ≤ −raR+R2 +Rc

−ra
. (16)

In other words, the inequality x2 ≤
(
R2 +Rc− raR

)2
r2a2

holds as t → +∞. Therefore, we have

the conclusion that

Ω =

{
(x, y, z, w) /, x2 ≤

(
R2 +Rc− raR

)
r2a2

2

,y2 + (z − c)2 ≤ R2, w2 ≤
(
R2 +Rc

)
r2

2
}

(17)

is the bound for the hyperchaotic systems (2), which finishes the proof of this result.

3 Application in Chaos Synchronization

In this section, we will use the results obtained in the previous section to study chaos synchro-
nization via linear feedback. For the master system (2), we construct another system called the
slave system, which can be designed as

.
x1 = ay1 − ax1 + w1 − k1 (w1 − w)
.
y1 = cx1 − x1z1 − y1 − k2 (y1 − y)

.
z1 = x1y1 − bz1
.
w1 = −y1z1 + rw1

, (15)

where x1, y1, z1, w1 are the state variables and k1 > 0, k2 > 0 are the control parameters. From
Theorem 2, we obtain

|y| ≤ R, |z| ≤ R+ c. (16)

Theorem 2. Systems (2) and (15) are globally and asymptotically synchronized when

k2 >
b (aσ +R+ 2c)2

4abσ −R2
− 1, k1 = 1,

(
σ >

R2

4ab
> 0

)
. (17)

Proof. The complete synchronization error is described as follows:

e1 = x1 − x, e2 = y1 − y, e3 = z1 − z, e4 = w1 − w.

Then, the error dynamics is obtained as
.
e1 = ae2 − ae1

.
e2 = (c− z) e1 − xe3 − e1e3 − (k2 + 1) e2

.
e3 = ye1 + xe2 + e1e2 − be3
.
e4 = re4 − ye3 − ze2 − e2e3

. (18)
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Now, define the following Lyapunov function:

V (e1, e2, e3) = σe2
1 + e2

2 + e2
3,

where σ is a positive constant and σ >
R2

4ab
> 0. Therefore, along the system (18), its time

derivative is provided by

1

2

.
V = σe1

.
e1 + e2

.
e2 + e3

.
e3

= σe1 (ae2 − ae1) + e2 ((c− z) e1 − xe3 − e1e3 − (k2 + 1) e2) + e3 (ye1 + xe2 + e1e2 − be3)

= −σae2
1 − (k2 + 1) e2

2 − be2
3 + (σa+ c− z) e1e2 + ye1e3

≤ −σae2
1 − (k2 + 1) e2

2 − be2
3 + (aσ +R+ 2c) |e1| |e2|+R |e1| |e3|

= −ETPE,

where

E = [|e1| , |e2| , |e3|]T , P =


σa −aσ +R+ 2c

2
−R

2

−aσ +R+ 2c

2
k2 + 1 0

−R
2

0 b


in which the matrix P is positive definite when

σ >
R2

4ab
> 0, and k2 >

b (aσ +R+ 2c)2

4abσ −R2
− 1.

Thus, according to Lyapunov function theory, it follows that

lim
t→+∞

|e1| = 0, lim
t→+∞

|e2| = 0, lim
t→+∞

|e3| = 0. (19)

In the following content, we will prove that lim
t→+∞

e4 = 0. To do so, we can find lim
t→+∞

e1 = 0

based on (19). Therefore, there is a sufficiently large T > t0 such that

∣∣∣∣ye3 + ze2 + e2e3

−r

∣∣∣∣ < ε

when t ≥ T , for any ε > 0. So, when t ≥ T and from (18), we can have

e4(t) = e4(t0)er(t−t0) + ert
∫ t

t0

(−ye3 − ze2 − e2e3) e−rτdτ

≤ e4(t0)er(t−t0) + ert
∫ t

t0

(−r) εe(−r)τdτ

= (e4(t0)− ε) er(t−t0) + ε,

for any ε > 0. Therefore, if the initial value e4(t0) > ε and t→ +∞, we obtain

e4(t)− ε ≤ (e4(t0)− ε) er(t−t0) → 0.

Also, we have

e4(t) = e4(t0)er(t−t0) + ert
∫ t

t0

(−ye3 − ze2 − e2e3) e−rτdτ

≥ e4(t0)er(t−t0) − ert
∫ t

t0

(−r) εe(−r)τdτ

= (e4(t0) + ε) er(t−t0) − ε.
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Therefore, if the initial value e4(t0) < −ε and t→ +∞, we get

e4(t) + ε ≤ (e4(t0) + ε) er(t−t0) → 0.

Consequently, when the initial value |e4(t0)| > ε and t→ +∞, we have the distance d (e4(t), I)→
0, where I = [−ε, ε]. So, for any sufficiently small ε > 0, there is a sufficiently large T > t0 such
that when t > T , we have |e4(t)| < ε. By the de definition of limit, we obtain

lim
t→+∞

e4(t) = 0. (20)

Summarizing the above, we have

lim
t→+∞

|e1| = 0, lim
t→+∞

|e2| = 0, lim
t→+∞

|e3| = 0, lim
t→+∞

|e4| = 0.

Ultimately, we deduce that there is worldwide synchronization between the slave system (15)
and the master system (2). The proof is now complete.

It should be noted that k1 and k2 reported in (17) are not limited because they have been
chosen as k1 > 0 and k2 > 0. Also, in matrix P reported in the above theorem, we observe that

P22 = k2 + 1, which makes one to consider lim
t→∞
|e2| = 0. This implies k2 >

b(aσ+R+2c)2

4abσ−R2 − 1.

4 Simulation studies

In this part, using the MATLAB 7.4, some numerical simulations are presented. The initial
conditions of master and slave systems are selected as (−1, 1,−2,−3) and (−7, 2, 3, 2), respec-

tively. When a = 10, b = 8/3, c = 28, r = −1, it is easy to obtain R2 =
b2c2

4 (b− 1)
=

1122

15
,

σ >
R2

4ab
= 7.84, k2 >

b (a (σ + 1) +R+ 2c)2

4abσ −R2
− 1 = 4248.3384 according to the Theorem 2 and

Theorem 3. Choose σ = 8, k2 = 4249, then, the master system (2) synchronizes with the slave
system (15) as shown in Figure 2 and Figure 3.

Figure 2: Effectiveness of chaos synchronization between system (2) and system (15).
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Figure 3: Effectiveness of chaos synchronization between system (2) and system (15).

5 Conclusion

In this research, understanding the limitations of chaotic systems is crucial for both control
theory and practical applications. We employ Lyapunov function theory and an optimization
method to establish boundaries for a newly identified 4D hyperchaotic system. These results
enable us to achieve global chaos synchronization using a linear feedback approach with two
inputs, a fundamental process for a wide range of applications. This synchronization trans-
forms initial disorder into a harmonized behavior. By validating these theoretical boundaries,
our study bridges the gap between theoretical concepts and real-world applications. To demon-
strate the robustness of our framework, extensive numerical simulations are conducted, closely
aligning with our theoretical analyses. The consistency observed between theory and simula-
tions strengthens the validity of our findings, highlighting the effectiveness of our methods. This
agreement between theory and simulations confirms the practical feasibility of our approach,
offering a concrete pathway for implementing chaos control strategies in diverse technological
and scientific fields.
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